1,337 research outputs found

    Globular Clusters in NGC 1275

    Full text link
    We present the results of a deep photometric study of the outer halo of NGC 1275, the highly active cD galaxy at the center of the Perseus cluster. We find a modest excess of faint (R>22.5R > 22.5) starlike objects in its halo, indicating a population of old-halo globular clusters. However, the total estimated cluster population corresponds to a specific frequency of SN=4.4±1.2S_N = 4.4 \pm 1.2, no larger than that of normal giant ellipticals and three times lower than that of other central cD galaxies such as M87. We discuss several ideas for the origin of this galaxy. Our results reinforce the view that high SNS_N (ie: highly efficient globular cluster formation) is not associated with cooling flows, or with recent starburst or merger phenomena.Comment: 25 pages, latex, postscript figures, tarred, Unix compressed, postscript version of paper and figures available at http://www.physics.mcmaster.ca/Grads/DKaisler/office.htm

    Measurement of Antenna Surfaces from In- and Out-Of-Focus Beam Maps using Astronomical Sources

    Get PDF
    We present a technique for the accurate estimation of large-scale errors in an antenna surface using astronomical sources and detectors. The technique requires several out-of-focus images of a compact source and the signal-to-noise ratio needs to be good but not unreasonably high. For a given pattern of surface errors, the expected form of such images can be calculated directly. We show that it is possible to solve the inverse problem of finding the surface errors from the images in a stable manner using standard numerical techniques. To do this we describe the surface error as a linear combination of a suitable set of basis functions (we use Zernike polynomials). We present simulations illustrating the technique and in particular we investigate the effects of receiver noise and pointing errors. Measurements of the 15-m James Clerk Maxwell telescope made using this technique are presented as an example. The key result is that good measurements of errors on large spatial scales can be obtained if the input images have a signal-to-noise ratio of order 100 or more. The important advantage of this technique over transmitter-based holography is that it allows measurements at arbitrary elevation angles, so allowing one to characterise the large scale deformations in an antenna as a function of elevation.Comment: 6 pages, 5 figures (accepted by Astronomy & Astrophysics

    The JCMT dense gas survey of the Perseus Molecular Cloud

    Full text link
    We present the results of a large-scale survey of the very dense gas in the Perseus molecular cloud using HCO+ and HCN (J = 4 - 3) transitions. We have used this emission to trace the structure and kinematics of gas found in pre- and protostellar cores, as well as in outflows. We compare the HCO+/HCN data, highlighting regions where there is a marked discrepancy in the spectra of the two emission lines. We use the HCO+ to identify positively protostellar outflows and their driving sources, and present a statistical analysis of the outflow properties that we derive from this tracer. We find that the relations we calculate between the HCO+ outflow driving force and the Menv and Lbol of the driving source are comparable to those obtained from similar outflow analyses using 12CO, indicating that the two molecules give reliable estimates of outflow properties. We also compare the HCO+ and the HCN in the outflows, and find that the HCN traces only the most energetic outflows, the majority of which are driven by young Class 0 sources. We analyse the abundances of HCN and HCO+ in the particular case of the IRAS 2A outflows, and find that the HCN is much more enhanced than the HCO+ in the outflow lobes. We suggest that this is indicative of shock-enhancement of HCN along the length of the outflow; this process is not so evident for HCO+, which is largely confined to the outflow base.Comment: 25 pages, 14 figures, 9 table

    Proper motion measurements as indicators of binarity in open clusters

    Full text link
    We analyze 9 open clusters with ages in the range 70 Myr to 3.2 Gyr using UCAC2 proper motion data and 2MASS photometry. For each cluster we consider the projected velocity distributions in the core and off-core regions separately. In the projected velocity distribution of all sample clusters we find a well-defined low-velocity peak, as well as an excess in the number of stars at larger velocities. The low-velocity peak is accounted for by the random motion of the single stars, while the high-velocity excess can be attributed to the large velocity changes produced by a significant fraction of unresolved binaries in a cluster. We derive kinematic parameters of the single-star distribution, in particular the projected velocity dispersion. The relatively large velocity dispersions derived in this work may reflect the non-virialized state of the clusters. Based on the relative number of high-velocity (binary) and single stars, we inferred for the sample clusters unresolved binary fractions in the range 1515%-54%, for both core and off-core regions. The present results suggest that care must be taken when applying proper-motion filters to sort out members, especially binaries in a star cluster. This paper shows that proper motions turn out to be a useful tool for identifying high-velocity stars as unresolved binary cluster members, and as a consequence, map and quantify the binary component in colour-magnitude diagrams.Comment: 9 pages and 9 figures. Astronomy and Astrophysics, accepted (25/10/2004

    Maximum Parsimony Phylogenetic Inference Using Simulated Annealing

    Get PDF

    Probing Dark Matter

    Get PDF
    Recent novel observations have probed the baryonic fraction of the galactic dark matter that has eluded astronomers for decades. Late in 1993, the MACHO and EROS collaborations announced in this journal the detection of transient and achromatic brightenings of a handful of stars in the Large Magellanic Cloud that are best interpreted as gravitational microlensing by low-mass foreground objects (MACHOS). This tantalized astronomers, for it implied that the population of cool, compact objects these lenses represent could be the elusive dark matter of our galactic halo. A year later in 1994, Sackett et al. reported the discovery of a red halo in the galaxy NGC 5907 that seems to follow the inferred radial distribution of its dark matter. This suggested that dwarf stars could constitute its missing component. Since NGC 5907 is similar to the Milky Way in type and radius, some surmised that the solution of the galactic dark matter problem was an abundance of ordinary low-mass stars. Now Bahcall et al., using the Wide-Field Camera of the recently repaired Hubble Space Telescope, have dashed this hope.Comment: 3 pages, Plain TeX, no figures, published as a News and Views in Nature 373, 191 (1995

    RĂ©sultats des campagnes MUSORSTOM : volume 15

    Get PDF
    La campagne MUSORSTOM 8, réalisée à bord du N.O. "Alis", s'est déroulée dans les eaux de Vanuatu du 19 septembre au 14 octobre 1994. Cent quatre-vingt-six opération de dragages et de chalutages ont eu lieu dans la zone bathyale supérieure, sur les pentes des îles et sur le sommet du guyot Bougainville. De grandes superficies chalutables ont été découvertes entre 300 et 1000 m de profondeur. La faune benthique est riche, bien diversifiée, mais semble d'une composition très différente de celle de Nouvelle-Calédonie : les Spongiaires et les Stylastérides, en particulier, ne contribuent pas de façon significative à la physionomie des peuplements. (Résumé d'auteur

    NGC 2419, M92, and the Age Gradient in the Galactic Halo

    Get PDF
    The WFPC2 camera on HST has been used to obtain deep main sequence photometry of the low-metallicity ([Fe/H]=-2.14), outer-halo globular cluster NGC 2419. A differential fit of the NGC 2419 CMD to that of the similarly metal-poor \ standard cluster M92 shows that they have virtually identical principal sequences and thus the same age to well within 1 Gyr. Since other low-metallicity clusters throughout the Milky Way halo have this same age to within the 1-Gyr precision of the differential age technique, we conclude that the earliest star (or globular cluster) formation began at essentially the same time everywhere in the Galactic halo throughout a region now almost 200 kpc in diameter. Thus for the metal-poorest clusters in the halo there is no detectable age gradient with Galactocentric distance. To estimate the absolute age of NGC 2419 and M92, we fit newly computed isochrones transformed through model-atmosphere calculations to the (M_V,V-I) plane, with assumed distance scales that represent the range currently debated in the literature. Unconstrained isochrone fits give M_V(RR) = 0.55 \pm 0.06 and a resulting age of 14 to 15 Gyr. Incorporating the full effects of helium diffusion would further reduce this estimate by about 1 Gyr. A distance scale as bright as M_V(RR) = 0.15 for [Fe/H] = -2, as has recently been reported, would leave several serious problems which have no obvious solution in the context of current stellar models.Comment: 32 pages, aastex, 9 postscript figures; accepted for publication in AJ, September 1997. Also available by e-mail from [email protected]
    • …
    corecore